Polytropic stellar models

Solutions to the Lane-Emden equation for n =1,3/2,2,5/2, 3:
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Check of the numerical solutions: the n = 1 polytrope has & = ,
as it should.

As n increases the solutions become less centrally concentrated.



Application to stars

First, consider the case where K is not fixed by the equation of
state. We can construct a polytropic solution for specified R and M,
given an assumed n.

Mass within radius r is:
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(taking 73 /&% outside the integral as it is a constant). From the
Lane-Emden equation, the integrand is a derivative, so can immedi-
ately be integrated to give,

m(r) = 4nrip, (—ézg)

At the surface & = &, the total mass is,
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or, in terms of the mean density p = 3M /(47 R?),

P (ﬁﬁ)
Pc §d€) c—¢,
The RHS is just a function of n, and can be tabulated or calculated
numerically.



Numerical values for polytropes needed to compute the radius,
mass, and central density concentration are:

S (_52%)&& %

2.45 4.90 1.00
3.14 3.14 3.29
D 3.6 2.71 5.99
4.35 241 11.4
6.90 2.02 54.2
15.0 1.80 622.4
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To apply to a particular star it is just a matter of sorting out the
scaling factors.

e.g. if the Sun is described by an n = 3 polytrope with mass
M = 1.989 x 10** g, radius Rs = 6.96 x 10'Y cm,

p=141gcm™

implying for n = 3 a central density,

pe="76.3 g cm >,



The scale factor r, = Ro/& = 1.0 x 101°. We therefore deduce
that,

K = 3.8 x 10" cgs units

so P, = 1.24 x 10'7 dynes cm ™2 For an ideal gas equation of state
with = 0.62,

T.=12x 10" K.

A chemically homogenous stellar model with M = 1 Mg has
T. = 1.4 x 107 K, so this approach gets us within ~ 10% of the
correct answer.

Although we have focused on the central properties, note that the
whole mechanical structure of the star is now specified once we have
(numerically) calculated 6 for n = 3.



Radiation pressure

An n = 3 polytrope can also be appropriate for a star dominated
by radiation pressure. As before, the equation of state is,

R 1 R
P="—pT + -al*= —pT.
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Now, assume that 8 = P,/ P is a constant throughout the star.
Then,

P.  aT?
l1—-f=—=—
P 3P

so, [ a constant implies that T oc P. Substituting into the
equation of state,

. 3_R4 1/3 (1—5)1/3[)4/3
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...a polytropic relation with n = 3 for constant (.



Application to supermassive stars

For this equation of state, with § constant,
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For an n = 3 polytrope we also have,
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The central density can be written as,

K =7Gp

3M
A R3

pe = 54.2p = 54.2

using the numerical values appropriate for n = 3. Equating the
expressions for K and eliminating p..,

=3.02x 1077 | —
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which is ‘Eddington’s quartic’. Note:

e For 0 < 3 <1, the LHS is a monotonically decreasing function
of 5.

e This means that as M increases, # must decrease. Supermassive
stars are dominated by radiation pressure.



White dwarfs

For a degenerate gas at zero T', K is fixed. This removes one
degree of freedom compared to the previous case where K could be
taken as a free parameter.

Assume some central density p., and polytropic index n. Then
p = pA" is a known function of £&. The relation between & and r is

T:Tng

where

Tp =

(n+ 1>Kp1/n—1 2
4rG " ° '

At r = R, £ = &, a known constant. The relation between central
density and the model radius is,

R pi2;nn.
For a given n,

M x p.R®.
Eliminating p. gives a mass-radius relation:

RocM?l;_Z.



Consequences of this relation,

e There is now a one-dimensional family of models. We can freely
specify either M or R, but not both.

e Forn =3/2,
R x M_1/3,

i.e. the radius shrinks with increasing mass.

e With increasing mass, the central density rises. Eventually,
this must invalidate the assumption that the electrons are non-
relativistic. There will be a transition between n = 3/2ton = 3.
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growing larger with increasing mass. A complete model could be
constructed by patching two polytropes, one with n = 3 and one
with n = 3/2, smoothly together.

Schematically, expect a relativistic core once p, ~ 10° g cm™

Increasing mass



This breaks down once most of the star is relativistic. From the

mass-central density relation, M does not vary with p,. for a polytrope
with n = 3 if K is fixed. Instead,

i) ()"

Inserting numerical values for /', and the n = 3 value for the first
bracket,

the Chandrasekhar limiting mass for a white dwarf. In
practice, white dwarfs have compositions rich in helium, carbon and
oxygen. Hence p, = 2 and,

MCh ~ 1.46 M@.

No white dwarf is observed with M > M¢,. Many have masses
well below the limit (e.g. 0.6 Mg). Interesting since even the merger
of two low mass white dwarfs wouldn’t exceed My,



