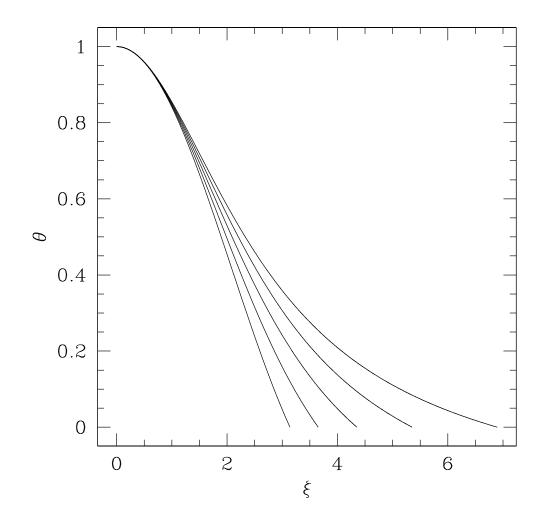
Polytropic stellar models

Solutions to the Lane-Emden equation for n = 1, 3/2, 2, 5/2, 3:



Check of the numerical solutions: the n = 1 polytrope has $\xi_1 = \pi$, as it should.

As n increases the solutions become less centrally concentrated.

Application to stars

First, consider the case where K is **not** fixed by the equation of state. We can construct a polytropic solution for specified R and M, given an assumed n.

Mass within radius r is:

$$m(r) = \int_0^r 4\pi r^2 \rho dr = 4\pi \rho_c \int_0^r \theta^n r^2 dr = 4\pi \rho_c \frac{r^3}{\xi^3} \int_0^{\xi} \theta^n \xi^2 d\xi$$

(taking r^3/ξ^3 outside the integral as it is a constant). From the Lane-Emden equation, the integrand is a derivative, so can immediately be integrated to give,

$$m(r) = 4\pi r^3 \rho_c \left(-\frac{1}{\xi} \frac{d\theta}{d\xi}\right)$$

At the surface $\xi = \xi_1$, the total mass is,

$$M = 4\pi R^3 \rho_c \left(-\frac{1}{\xi} \frac{d\theta}{d\xi} \right)_{\xi = \xi_1}$$

or, in terms of the mean density $\bar{\rho} = 3M/(4\pi R^3)$,

$$\frac{\bar{\rho}}{\rho_c} = \left(-\frac{3}{\xi}\frac{d\theta}{d\xi}\right)_{\xi=\xi_1}$$

The RHS is just a function of n, and can be tabulated or calculated numerically.

Numerical values for polytropes needed to compute the radius, mass, and central density concentration are:

n	ξ_1	$\left(-\xi^2 \frac{d\theta}{d\xi}\right)_{\xi=\xi_1}$	<u>ρ</u> ρ
0	2.45	4.90	1.00
1	3.14	3.14	3.29
1.5	3.65	2.71	5.99
2	4.35	2.41	11.4
3	6.90	2.02	54.2
4	15.0	1.80	622.4

To apply to a particular star it is just a matter of sorting out the scaling factors.

e.g. if the Sun is described by an n = 3 polytrope with mass $M_{\odot} = 1.989 \times 10^{33}$ g, radius $R_{\odot} = 6.96 \times 10^{10}$ cm,

$$\bar{\rho} = 1.41 \text{ g cm}^{-3}$$

implying for n = 3 a central density,

$$\rho_c = 76.3 \text{ g cm}^{-3}.$$

The scale factor $r_n = R_{\odot}/\xi_1 = 1.0 \times 10^{10}$. We therefore deduce that,

$$K = 3.8 \times 10^{14}$$
 cgs units

so $P_c = 1.24 \times 10^{17}$ dynes cm⁻². For an ideal gas equation of state with $\mu = 0.62$,

$$T_c = 1.2 \times 10^7 \text{ K}.$$

A chemically homogenous stellar model with $M = 1 M_{\odot}$ has $T_c = 1.4 \times 10^7$ K, so this approach gets us within $\approx 10\%$ of the correct answer.

Although we have focused on the central properties, note that the whole mechanical structure of the star is now specified once we have (numerically) calculated θ for n = 3.

Radiation pressure

An n = 3 polytrope can also be appropriate for a star dominated by radiation pressure. As before, the equation of state is,

$$P = \frac{R}{\mu}\rho T + \frac{1}{3}aT^4 = \frac{R}{\mu\beta}\rho T.$$

Now, assume that $\beta = P_g/P$ is a constant throughout the star. Then,

$$1 - \beta = \frac{P_r}{P} = \frac{aT^4}{3P}$$

so, β a constant implies that $T^4 \propto P$. Substituting into the equation of state,

$$P = \left(\frac{3R^4}{a\mu^4}\right)^{1/3} \left(\frac{1-\beta}{\beta^4}\right)^{1/3} \rho^{4/3}$$

...a polytropic relation with n = 3 for constant β .

Application to supermassive stars

For this equation of state, with β constant,

$$K = \left(\frac{3R^4}{a\mu^4}\right)^{1/3} \left(\frac{1-\beta}{\beta^4}\right)^{1/3}$$

For an n = 3 polytrope we also have,

$$K = \pi G \rho_c^{2/3} \frac{R^2}{\xi_1^2}.$$

The central density can be written as,

$$\rho_c = 54.2\bar{\rho} = 54.2\frac{3M}{4\pi R^3}$$

using the numerical values appropriate for n = 3. Equating the expressions for K and eliminating ρ_c ,

$$\frac{1-\beta}{\mu^4 \beta^4} = 3.02 \times 10^{-3} \left(\frac{M}{M_{\odot}}\right)^2$$

which is 'Eddington's quartic'. Note:

- For $0 \le \beta \le 1$, the LHS is a monotonically decreasing function of β .
- This means that as M increases, β must decrease. Supermassive stars are dominated by radiation pressure.

White dwarfs

For a degenerate gas at zero T, K is fixed. This removes one degree of freedom compared to the previous case where K could be taken as a free parameter.

Assume some central density ρ_c , and polytropic index n. Then $\rho = \rho_c \theta^n$ is a known function of ξ . The relation between ξ and r is

$$r = r_n \xi$$

where

$$r_n = \left[\frac{(n+1)K}{4\pi G}\rho_c^{1/n-1}\right]^{1/2}$$

At r = R, $\xi = \xi_1$, a known constant. The relation between central density and the model radius is,

$$R \propto \rho_c^{\frac{1-n}{2n}}.$$

For a given n,

$$M \propto
ho_c R^3$$
.

Eliminating ρ_c gives a mass-radius relation:

$$R \propto M^{\frac{1-n}{3-n}}.$$

Consequences of this relation,

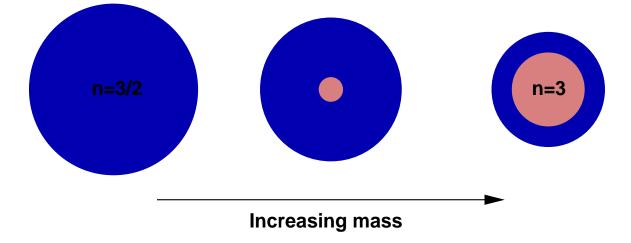
- There is now a one-dimensional family of models. We can freely specify *either* M or R, but not both.
- For n = 3/2,

$$R \propto M^{-1/3},$$

i.e. the radius *shrinks* with increasing mass.

• With increasing mass, the central density rises. Eventually, this must invalidate the assumption that the electrons are non-relativistic. There will be a transition between n = 3/2 to n = 3.

Schematically, expect a relativistic core once $\rho_c \sim 10^6$ g cm⁻³, growing larger with increasing mass. A complete model could be constructed by patching two polytropes, one with n = 3 and one with n = 3/2, smoothly together.



This breaks down once most of the star is relativistic. From the mass-central density relation, M does not vary with ρ_c for a polytrope with n = 3 if K is fixed. Instead,

$$M = 4\pi \left(-\xi^2 \frac{d\theta}{d\xi}\right)_{\xi=\xi_1} \left(\frac{K}{\pi G}\right)^{3/2}.$$

Inserting numerical values for K, and the n = 3 value for the first bracket,

$$M_{Ch} = \frac{5.836}{\mu_e^2} M_{\odot},$$

the **Chandrasekhar limiting mass** for a white dwarf. In practice, white dwarfs have compositions rich in helium, carbon and oxygen. Hence $\mu_e = 2$ and,

$$M_{Ch} \simeq 1.46 \ M_{\odot}.$$

No white dwarf is observed with $M > M_{Ch}$. Many have masses well below the limit (e.g. 0.6 M_{\odot}). Interesting since even the merger of two low mass white dwarfs wouldn't exceed M_{Ch} .