Equation of radiative diffusion

distancer

Consider a sphere of uniform brightness B. At an exterior point,

e [ = B if the ray intersects the sphere

e /| = 0 otherwise.

Integrate over the visible area of the sphere to find the flux,

F = [Tcosfd =B [ dg [ sinf cos 66

where the upper limit on the € integral is where a ray just grazes
the sphere, sin 0. = R/r. The integral gives,

F = 7nB(1 —cos’0,) = mBsin*0,
R 2
F =B (—)

r

ie it all works. The specific intensity is constant but the solid angle
drops with radius to give the inverse square law.

Setting r = R, the flux at the surface of an object of uniform
brightness B is F'= 7.



Formal solution of the transfer equation

Start with,

dl,
+1, =25,

1%
dr,

and multiply by the integrating factor e/ 4™,

dl,
e’ +evl, = e™"S,
dr,
d
dr, Le”] = e™s,

Ty

Le" = /0 eTLSVdT;—l—constant

When 7, =0, I, = I,(0). Thus,
I,(r) =1,(0)e”™ + /OTV e” (=TS, () dr!
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Note: 7, = 1 implies absorption by a factor of e. Hence: the final
intensity is the initial intensity diminished by absorption, plus the
integrated source function also diminished by absorption.

For a constant source function,

I(r)=10)e™+S5,(1—e™)

and as 7, — oo, I, — 5,. True generally, the specific intensity
approaches the source function at large optical depth.



At high optical depths, S, — B,. However, within a star there is
a net radial flux. Hence, there must be some departure from isotropy:.
Aim to relate the flux to the local temperature gradient.

z

Geometry for the derivation:
e Plane-parallel medium (all quantities are f(z) only).
e Angular dependence of [, only via 6.

e Use variable u = cos §. Geometry gives,

dz _@
cosh

ds =



Using 1 and z as variables, the transfer equation,

dl
S = v ]1/ — SV
o, = Pl )
becomes,
ol,(z, )
- a5 — — v ]y - Py
9 pry(I, — 5y)

(note now a partial derivative).

Rearrange this to get,

p 0ly(z, 1)
pKk, 0z

I(z,u) =S, —

(pk,) ! is the mean free path. So derivative term is the change in
intensity per mean free path. This is small (equivalently, I, ~ S,).
An approximation to the intensity is,

1) (2, 1) = S,(T) = B,(T)

Strategy is to substitute this back to obtain an improved approx-
imation.



Next level of approximation,

n 0B,
PR, 0z

]y)(zmu) ~ BI/(T> o

Integrate for the flux,
F,(z) = /[S)(z,,u) cos 6d).

D

{

Solid angle of annulus df2 = 27 sin #df = —27du. So,
F(z) =2 [ 10 (2, ) ey
(minus sign absorbed into limits).

B, is isotropic, so only the derivative term in the expression for
IV has a non-zero integral.



For the monochromatic flux the integral gives,

2_7r8BV +1

pK, 0z 771

47 0B, (T)
_3p/<c,, 0z
4w 0B,(T) 0T
B _3p/<c,, ol 0z

FI/(Z) — ,u2d,u

which is what we want — relation between the energy flux at fre-
quency v and the temperature gradient. Remaining work is to put
this in a useful form.

The total flux is then,

F(z) = /OOO F,(2)dv
3027 pr, OT Y

Using F' = w B, we can write,

~ 0B, (T) 0 oo
/0 37 dv = (9—T/0 B,(T)dv

~ 0B(T)

0T

4013

T



Still have (pr,)~! to deal with. Define the Rosseland mean
opacity, kg, to be,

¢ 1 9B,
1 . g pry 0T dv
— 00
K 0By
PKR (j)’ - dv

With this definition, the energy flux is,

16012 0T
3pkp 0z

F(z) =

Properties of the equation of radiative diffusion,
e Flux behaves as an effective heat conductivity.

e Material properties enter via the Rosseland mean — this must be
computed for the gas of given metallicity, temperature etc.

e Applies provided that quantities change slowly on the scale of
the mean free path (ie, not just plane parallel).
In spherical symmetry,

16macr? 7 dT
3kpp  dr

L= -



The Eddington limit

The absorption of photons by the medium must lead to a force, as
the photons carry momentum. For a spherically symmetric source
with luminosity L,

e Energy flux at distance r is L/(4mr?)
e Momentum flux is L/(4mcr?).

The force per unit mass, f,.q is then,

KL
Frat = 1ot

Aer?

where k is the fraction of the momentum flux absorbed by unit
mass. For a point mass M, the inward force due to gravity is,

GM
fgmv — 7

Radiation pressure balances gravity when fr.q = fyrav,

B AreGM
N K

L

At greater luminosities the pressure of radiation exceeds the grav-
itational force, and gas will be blown away.



Assume opacity is due to Thomson scattering by free elec-
trons. Mass scattering coefficient per hydrogen atom is op/my,
where my is the mass of a hydrogen atom and op the Thomson
cross-section. This defines the Eddington limit,

ArcGMmpg
Lpg =
or
M
= 1.25 x 10% (ﬁ@) erg st

M
— 3.2 x 10 (—) L.
X M@ O

Assumptions:

e Thomson scattering cross section only. In an ionized gas contain-
ing metals or dust other processes will often add to x, reducing
the maximum luminosity.

e Spherical symmetry:.



Application to massive stars

From Hansen € Kawaler, Table 2.1, the luminosity of zero age
main sequence stars at high masses is approximately,

L M 2.4
(—) ~1.2x10° ( )
Lo 30 Mg

Eliminating L we find that the Eddington limit is reached for
M ~ 100M. This implies that the formation of very massive stars

cannot be spherically symmetric, as continuum radiation pressure
would blow away the infalling gas.
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