
Equation of radiative di�usion
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I=B

distance rConsider a sphere of uniform brightness B. At an exterior point,� I = B if the ray intersects the sphere� I = 0 otherwise.Integrate over the visible area of the sphere to �nd the ux,F = Z I cos �d
 = B Z 2�0 d� Z �c0 sin � cos �d�where the upper limit on the � integral is where a ray just grazesthe sphere, sin �c = R=r. The integral gives,F = �B(1� cos2 �c) = �B sin2 �cF = �B 0@Rr 1A2ie it all works. The speci�c intensity is constant but the solid angledrops with radius to give the inverse square law.Setting r = R, the ux at the surface of an object of uniformbrightness B is F = �B. 1



Formal solution of the transfer equationStart with, dI�d�� + I� = S�and multiply by the integrating factor eR d�� .e�� dI�d�� + e��I� = e��S�dd�� [I�e�� ] = e��S�I�e�� = Z ��0 e� 0�S�d� 0� + constantWhen �� = 0, I� = I�(0). Thus,I�(��) = I�(0)e��� + Z ��0 e�(���� 0�)S�(� 0�)d� 0�Note: �� = 1 implies absorption by a factor of e. Hence: the �nalintensity is the initial intensity diminished by absorption, plus theintegrated source function also diminished by absorption.For a constant source function,I�(��) = I�(0)e��� + S�(1� e���)and as �� ! 1, I� ! S� . True generally, the speci�c intensityapproaches the source function at large optical depth.
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At high optical depths, S� ! B�. However, within a star there isa net radial ux. Hence, there must be some departure from isotropy.Aim to relate the ux to the local temperature gradient.

θ

z

dz ds

Geometry for the derivation:� Plane-parallel medium (all quantities are f(z) only).� Angular dependence of I� only via �.� Use variable � = cos �. Geometry gives,ds = dzcos � = dz�
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Using � and z as variables, the transfer equation,dI�ds = ����(I� � S�)becomes, �@I�(z; �)@z = ����(I� � S�)(note now a partial derivative).Rearrange this to get,I�(z; �) = S� � ���� @I�(z; �)@z(���)�1 is the mean free path. So derivative term is the change inintensity per mean free path. This is small (equivalently, I� ' S�).An approximation to the intensity is,I(0)� (z; �) � S�(T ) � B�(T )Strategy is to substitute this back to obtain an improved approx-imation.
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Next level of approximation,I(1)� (z; �) � B�(T )� ���� @B�@zIntegrate for the ux,F�(z) = Z I(1)� (z; �) cos �d
:
θ

Solid angle of annulus d
 = 2� sin �d� = �2�d�. So,F�(z) = 2� Z +1�1 I(1)� (z; �)�d�(minus sign absorbed into limits).B� is isotropic, so only the derivative term in the expression forI(1)� has a non-zero integral. 5



For the monochromatic ux the integral gives,F�(z) = � 2���� @B�@z Z +1�1 �2d�= � 4�3��� @B�(T )@z= � 4�3��� @B�(T )@T @T@zwhich is what we want { relation between the energy ux at fre-quency � and the temperature gradient. Remaining work is to putthis in a useful form.The total ux is then,F (z) = Z 10 F�(z)d�= �4�3 @T@z Z 10 1��� @B�(T )@T d�Using F = �B, we can write,Z 10 @B�(T )@T d� = @@T Z 10 B�(T )d�= @B(T )@T= 4�T 3�
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Still have (���)�1 to deal with. De�ne the Rosseland meanopacity, �R, to be, 1��R � 1R0 1��� @B�@T d�1R0 @B�@T d� :
With this de�nition, the energy ux is,F (z) = �16�T 33��R @T@z :Properties of the equation of radiative di�usion,� Flux behaves as an e�ective heat conductivity.� Material properties enter via the Rosseland mean { this must becomputed for the gas of given metallicity, temperature etc.� Applies provided that quantities change slowly on the scale ofthe mean free path (ie, not just plane parallel).In spherical symmetry,Lr = �16�acr23�R� T 3dTdr :
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The Eddington limitThe absorption of photons by the medium must lead to a force, asthe photons carry momentum. For a spherically symmetric sourcewith luminosity L,� Energy ux at distance r is L=(4�r2)� Momentum ux is L=(4�cr2).The force per unit mass, frad is then,frad = �L4�cr2where � is the fraction of the momentum ux absorbed by unitmass. For a point mass M , the inward force due to gravity is,fgrav = GMr2Radiation pressure balances gravity when frad = fgrav,L = 4�cGM�At greater luminosities the pressure of radiation exceeds the grav-itational force, and gas will be blown away.
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Assume opacity is due to Thomson scattering by free elec-trons. Mass scattering coeÆcient per hydrogen atom is �T=mH ,where mH is the mass of a hydrogen atom and �T the Thomsoncross-section. This de�nes the Eddington limit,LEdd = 4�cGMmH�T= 1:25� 1038 0@ MM�1A erg s�1= 3:2� 104 0@ MM�1AL�:Assumptions:� Thomson scattering cross section only. In an ionized gas contain-ing metals or dust other processes will often add to �, reducingthe maximum luminosity.� Spherical symmetry.
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Application to massive starsFrom Hansen & Kawaler, Table 2.1, the luminosity of zero agemain sequence stars at high masses is approximately,0@ LL�1A ' 1:2� 105 0@ M30 M�1A2:4Eliminating L we �nd that the Eddington limit is reached forM � 100M�. This implies that the formation of very massive starscannot be spherically symmetric, as continuum radiation pressurewould blow away the infalling gas.
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