Convection: stability criteria

If the luminosity is transported by radiative diffusion, then the

flux is,
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For illustrative purposes, assume that 7% /p is constant (as it would
be for an n = 3 polytrope). Then,
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In a steady state, the energy flux at a given radius is set by the

requirement that L, equal the rate of interior energy generation.
Thus, dT'/dr will be large:

e If the luminosity is large.

e And / or if the opacity is large.

The gradient cannot become arbitrarily large, however. Instead,
convection sets in.



Consider a medium of uniform composition with density and tem-
perature profiles p(r) and T'(r). Derive the Schwarzschild condition
for convection by considering notional displacements of mass ele-
ments.
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Displace a mass element dr without exchanging heat with the
environment, i.e. adiabatically. What happens?

e Element expands to maintain pressure balance with the new en-
vironment.

e New density of the element p* will not generally equal the am-
bient density at r -+ dr.

e Since the perturbation was adiabatic, for the element,
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New density of the element will be:
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e p* > p(r + dr) the displaced element will be denser than the
surroundings and will settle back down — stability.

e p* < p(r+ dr) buoyancy will cause the element to rise further
— instability

This implies stability if we have,
1 pdP _dp

'y Pdr > dr’

The same physics can be expressed in terms of the temperature
gradient. In the stable case when p* > p(r—+dr), pressure equilibrium
requires that T < T'(r + dr). Graphically:
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This i1s the stable case.



Stability condition can be written,
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where (dT'/dr).q is the adiabatic temperature gradient. Using
the definition of the second adiabatic exponent,
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the condition for stability becomes,
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Note: both these gradients are negative, which makes this inequal-
ity potentially confusing. Physically: too rapid changes of T" with r
— convection.



We can convert this condition into a maximum luminosity that
can be carried by radiation before convection sets in. Equation of
radiative diffusion gives,
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Stability requires,
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Now eliminate the pressure gradient using hydrostatic equilibrium,
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If the luminosity exceeds this amount, convection will set in.



Graphically, easy to see that convective fluid motions will act as
an additional source of energy transport:
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In this, the unstable situation, the displaced element is hotter
than its new surroundings. If we now relax the requirement of adia-
baticity, radiation will leak out of the rising fluid element — an extra
energy flux from hotter to cooler regions.

Obviously, we could equally well have considered downward adia-
batic displacements.



What causes convective instability in some regions of a star but not,
in others? As an example, consider again a star with T/ p equal to a
constant. In the outer layers, m(r) ~ M. The maximum luminosity
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then becomes,

Vulnerable to convection if,

e — 1. We have shown that the adiabatic exponents drop
below 5/3 in ionization zones near the stellar surface.

e rp is large. This occurs when there is a large contribution to the
opacity from atomic processes.

Both these arguments suggest that regions of the star where 7" ~
10* — 10° K and ionization is occurring are liable to be convective.
These are surface convection zones, and will not be present in massive
stars with high effective temperatures.

Convection zones can also occur in the core. A large luminosity
at a small m(r) is required. This will occur if the nuclear energy
generation is a very very strong function of 1" — will show later that
this occurs for CNO reactions in more massive stars.



Convective zones as a function of stellar mass for zero-age main
sequence stars.

m/M
1.0

Convective

0.8

0.6 Radiative

0.4

0.2
Convective

-0.4 0 0.4 0.8 1.2 1.6
log (M / solar mass)

I[s it a coincidence that surface convection zones end almost at the
same mass as the core becomes convective?



What happens when convection sets in?
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Enormously complicated fluid motions (e.g. Brummell et al. 2002)!
Most stellar models use drastically simplified descriptions.



